Jawabanpaling sesuai dengan pertanyaan Buktikan bahwa : 3+5+7+dots+(2n+1)=n^(2)+2n berlaku untuk semus n bilangan asli
Step 1 Prove true for n=1 LHS= 2-1=1 RHS=1^2= 1= LHS Therefore, true for n=1 Step 2 Assume true for n=k, where k is an integer and greater than or equal to 1 1+3+5+7+....+2k-1=k^2 - 1 Step3 When n=k+1, RTP 1+3+5+7+...+2k-1+2k+1=k+1^2 LHS 1+3+5+7+...+2k-1+2k+1 =k^2+2k+1 -from 1 by assumption =k+1^2 =RHS Therefore, true for n=k+1 Step 4 By proof of mathematical induction, this statement is true for all integers greater than or equal to 1 here, it actually depends on what your school tells you because different schools have different ways of setting out the final step but you get the gist of it sWd4.
  • 2tp6iyk0e1.pages.dev/101
  • 2tp6iyk0e1.pages.dev/193
  • 2tp6iyk0e1.pages.dev/142
  • 2tp6iyk0e1.pages.dev/162
  • 2tp6iyk0e1.pages.dev/569
  • 2tp6iyk0e1.pages.dev/335
  • 2tp6iyk0e1.pages.dev/194
  • 2tp6iyk0e1.pages.dev/378
  • buktikan bahwa 1 3 5 7 2n 1 n2